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ABSTRACT-Smartphone, with its powerful capabilities, has been wildly used in every area of our day to day life. The enormous 

kinds of applications installed in these smart phones like WhatsApp and Viber have changed the way people live and communicate. 

An estimate by Gartner indicates that 90% of the phones by the end of 2018 will be smartphones. The most popular mobile operating 

system today in the industry is Android. However, with the prevalence of Android smartphone, the malware writers have begun to 

target it. Android use permission- based system to warn the users about the risk associated with an application. This paper will 

review the growth of malware on Android platform to provide an understanding of the real risk and behavior of these types of 

threats. We will also review some countermeasures and tools to analyze Android applications which are based on Android 

Permission Model. The findings of the review will be making an effort to research in the area of Android malware detection by 

understanding the current scenario and developments that have happened in the field thus far. 
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1. INTRODUCTION  

Smartphones have become an integral part of almost everyone’s daily life. As the capabilities and functionality of these devices 

are constantly improving and new innovative technologies are emerging, more and more people rely on smartphones technologies. 

Nearly every small scale mobile device includes features like high-bandwidth, web access, location tracking, ability to access digital 

media etc. The amount and importance of personal data carried by smartphones have become similar to that stored in personal 

computers and laptops. According to a prediction of IMS Research (the topmost independent market research and consultancy in 

the global electronics industry), the annual smartphone sales will exceed 1 billion devices at the end of 2016[1]. All the sophisticated 

capabilities and data in modern mobile phones make them very attractive to malicious software developers, and increase the 

probability of their use in various illegal activities. Smartphones need to run lightweight operating system due to limited battery 

and storage constraints. Android has become the most popular operating system with 79 percent of smartphone market share in 

2017[2].  

 

 
Fig1: Market Share of various operating systems in smartphones [2]. 
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In Android users can download applications from official Google Play Store, but it allows users to install applications from third 

party application stores also. With a current number of 2.8 million apps available(in 2017) for download via Google’s official Play 

Store [3], and possibly another million available on third party application stores, we can estimate that there are over 20,000 new 

applications being released every month. The major motivation behind the malware attacks on android is the popularity of Android. 

According to F-secure security report 2017, 99% of the total malware in the market is designed for Android [4]. This has the prime 

reason for recent research on both malware attacks and protection level of Android devices.  Given a large number of published 

researches on Android security, especially on Android permission model, we provide a systematic overview of the current state of 

Android security. In particular, we investigate the recent advancement on Android security, identify the issues in Android 

permission model, and analyze the countermeasures to address the security issues. The rest of this paper is organized as follows: 

Section 2 introduces the Android Permission Model. Section 3 discusses the issues in Android permission model. Sections 4 present 

countermeasures and compare the tools to detect malware. Finally, Section 6 concludes the paper. 

 

2. Android Permission Model  

The security architecture of Android, the Google Chrome browser extension system and the Blackberry platform, all use a 

similar security model called the permission-based security model [5]. A permission-based security model can be loosely defined 

as a model in which  

1) Each application is associated with a set of permissions that allows accessing certain resources;  

2) Permissions are explicitly accepted by users during the installation process and checked at runtime when resources are 

requested. 

Android applications files are packed in files with apk extension. These files contain all the classes and resources required by 

the applications [6]. The binary classes are converted into a proprietary format for Dalvik Virtual Machine (dex files).  Each 

application runs in a separate virtual machine, having its own unique identifier (UID). Due to this, application resources are 

protected from other applications and the communication and data transfer between applications has a high degree of confidence. 

Even so, applications could communicate each other using messages, this being another source of threat. Android permissions 

themselves are much more granular than a typical LINUX permission system. They cover a large set of operations, including 

controlling the sleep state, accessing device hardware, accessing PII, and many system operations. Applications need user 

permissions in order to access restricted API. According to [7], application permissions fall in one of these categories: 

 •Normal – Granted automatically, Normal permissions don’t present any risk for applications or system. Even the user is not 

informed when the applications are installed. 

•Dangerous – These permissions, if used by malicious authors, could produce negative effects and the user must be aware of 

about it. If the permission request is denied by the user, then the application is not installed. 

•Signature: Signature permissions are useful for restricting component access to a small set of applications trusted and controlled 

by the developer.  

 •Signature or System – These permissions are required for system applications and are granted only if the requesting application 

is signed by the same developer that defined the permission.   

All permissions required need to be declared in application's AndroidManifest.xml file like this:   

<uses-permission android:name=  "android.permission.INTERNET"> 

 </uses-permission>     

 INTERNET: Allows applications to open network sockets. 

 Also, applications can define custom permissions that can be used to access their resources.  

 

3. Security Issues in Android’s Permission Model 

According to Fang et al. Android Permission Model is suffering from security issues including permission gap, permission 

escalation attack, the coarse granularity of permissions, incomplete permission administration and insufficient permission 

documentation [8]. 

 

Both the developers and end users usually lack in permission knowledge result in imperfect permission administration. Felt et 

al. [9] examined whether the Android permission system is effective at warning users. In particular, they evaluated whether during 

installation users pay attention to the list of required permissions displayed by the application. They performed two usability studies: 

an Internet survey of 308 Android users and a laboratory study wherein they interviewed and observed 25 Android users. The results 

displayed that only 17% of participants paid attention to permissions during installation, and only 3% of Internet survey respondents 

could properly answer all three permission comprehension questions. This indicates that current Android permission warnings do 

not help most users make correct security decisions. Further they analyzed 100 paid and 856 free Android applications, and found 

that most of the applications (above 80%) ask for at least one ‘dangerous permission’. Changes to these permission systems are 

necessary to decrease the number attacks on Android platform. Barrera et al. [10] analyzed the permission distribution of many 

applications and revealed that most of them are of coarse granularity. According to them, the INTERNET permission is the most 

popular and hypothesized that most developers request this to request advertisements from remote servers. Even the internet 

permission allows an application to send HTTP(s) request to all domains and connect to arbitrary destinations and ports. Permission 

gap is also the most dangerous threat to Android Security [11]. If applications are granted more permissions than they actually need 

it facilitates all kinds of malicious usage. Felt et al. [12] Identified that 56% of the applications request for a large number of 

unnecessary permissions. Developers may make wrong decisions because of several reasons like permission name ambiguities, 

deprecated permissions etc. Vidas et al. [13] considered that the limited permission usage information on Android is also perplexing 

the developers. Privilege escalation attack [8] allows a malicious application to communicate with other applications so as to access 
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critical resources without requesting for corresponding permissions explicitly. An application with less permission can access 

components of a more privileged application because permission model allows transitive permission usage [14]. 

 

4. Permission- Based Malware Detection Mechanisms  

Malware or malicious code is a short form for malicious software. It is a standalone code or malicious code attached with 

software which is designed with an intension to harm, steal or corrupt the data, networks or hosts [15]. Viruses, worms, rootkits, 

adware, trojans, spyware and botnets are all types of malware.This section present research work related to permission- based 

malware detection methods that analyze permissions to make decisions and various tools that detect malicious applications. 

 

 

5.1 Permission Analysis 

Liccardi et al. [16] collected about 528,433 apps on Google Play and analyzed the permissions requested by each app. To 

measure the risk factor of an app, they developed ‘sensitivity score’ a measure to represent the number of occurrences of permissions 

that read personal information about users where network communication is possible. From the dataset 46% applications collect 

between 1 and 20 sensitive permissions and have the ability to transmit it outside the device. The sensitivity of apps differs greatly 

between free and paid apps as well as between categories and content ratings. Sarma et al. [17] investigated the feasibility of using 

both the permissions requested by an app, the category of the application and what permissions are requested by other applications 

in the same category to better inform users about the risks and benefits of an app. Di Cerbo et al. [18] presented a methodology in 

a forensic analysis to protect users from suspicious applications. The methodology relies on the comparison of the Android security 

permission of each application, with a set of reference models, for applications that manage sensitive data. Rosen et al. [19] 

presented a static analysis approach to providing users the knowledge required to make informed decisions about the installed 

application. First, they produce a knowledge base of mappings between API calls and fine-grained privacy-related behaviours. They 

then use this knowledge base to produce high-level profiles of application behaviour. They have analyzed almost 80,000 

applications and have made the resulting behaviour profiles available both through an Android application and online. Nearly 1500 

users have used this application. Based on 2782 pieces of application-specific feedback, they analyze users’ opinions concerning 

how applications affect their privacy and demonstrate that these profiles have had a considerable impact on their understanding of 

those applications. P. Chai in his thesis [20] investigated the permissions requested by Android applications, with the possibility of 

discovering malicious applications based only on information presented to the user before an application is installed. During the 

research work, the author collected a large data set consisting of applications available on Google Play and 3 different third-party 

Android application stores. These applications are analyzed using manual pattern recognition and k-means clustering, focusing on 

the permissions they request. The pattern analysis relies on a smaller data set consisting of confirmed malicious applications. The 

method is evaluated based on its ability to acknowledge malicious potential in the analyzed applications. During the analysis of this 

data set, they uncovered incongruous patterns in the Google Play market relating to permissions with high protection levels. Dini 

et al. [21] proposed a multi-criteria analysis of Android applications, to assist the user to simply understand the trustworthiness 

degree of an application from a security side. They allocate a threat score to each permission according to the criticality of both 

resources and critical operations they control; they calculate a global threat score for each application, which is a function of the 

threat score of all the required permissions. Felt et al. [8] use static analysis to determine whether or not an Android application is 

over- privileged. It classified an application as over privileged if the application requested a permission which it never actually 

used. With a data set of 940 applications they find that about one-third of the participants are over privileged. Their key observation 

was that developers are trying to follow the least privilege however generally fail due to insufficient API documentation.  

Au et al.[22]  survey the permission systems of many popular smartphone operating systems and taxonomies them by the amount 

of control they give users, the amount of information they convey to users and also the level of interactivity they need from users. 

Further, they discuss several issues related to extracting permissions-based information from Android applications. Peng et al. [23] 

used probabilistic generative models to calculate the risk in Android apps. They selected the permissions of the applications as a 

key feature. Specifically, they selected the top 20 most frequently requested permissions in their dataset, composed by 2 benign 

software collections (157,856 and 324,658 samples, respectively), downloaded from the Google Play and 378 unique samples of 

malware. They obtained a 0.94 area below ROC curve as a best result. Sato et al. [24] proposed a technique based on the 

characteristic analysis of Android manifest files and is effective for detecting well-known existing malware and unknown malware. 

The result shows that the new technique can effectively detect Android malware, even when the sample is unknown. The preliminary 

investigations discovered that there are certain differences between the manifest files of benign applications and malicious 

applications. Permissions typically cover broad, vague categories of functionality and provide insufficient detailed information for 

users to make meaningful decisions. Bartel et al. [25] presented an approach to detecting permission gaps using static analysis. 

Using 2 datasets of Android applications, they discovered that a non negligible part of applications suffer from permission gaps, 

i.e. does not use all the permissions they declare. The prototype implementation is able to automatically find 9562 Android 

framework entry points that check permissions. The analysis revealed that 94/742 and 35/679 downloaded applications from 

Android app stores indeed suffer from permission gaps.  Felt et al. [26] survey the current position of mobile malware in the wild. 

They analyze the motivations behind forty- six pieces of iOS, Android, and Symbian malware that unfold in the wild from 2009 to 

2011. They detected that four pieces of malware use root exploits to mount sophisticated attacks on Android mobiles. As a part of 

the survey, they use permission counts and a comparison of individual permissions to find malicious applications. Android malware 

usually requests the ability to directly send SMS messages, which is uncommon among benign applications. Permission-based 

classification would force future consideration as the set of known Android malware grows.   
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5.2 Tools 

Felt et al. built Stowaway, a tool which detect over claim of permissions in Android applications [12]. Stowaway analyzed a 

collection of 940 applications and identified that about one-third of these applications request more permissions than what they 

need. The authors found that common unnecessary permissions include ACCESS_NETWORK_STATE, READ_PHONE_STATE, 

ACCESS_WIFI_STATE, WRITE_EXTERNAL_STORAGE, and CALL_PHONE. Such unnecessary permissions can be 

leveraged by malicious applications. 

Au et al. [27] developed PScout, a static analysis tool which extracts the permission specification from the Android operating 

system source code. PScout overcomes many challenges, like scalability as a result of Android’s 3.4 million line code base, 

accounting for permission enforcement across processes due to Android’s use of IPC and abstracting Android’s different permission 

checking mechanisms into a single primitive for analysis. They use PScout to analyze four versions of Android spanning version 

2.2 up to the newly released Android 4.0. The study found that that while Android has over 75 permissions, there is very little 

redundancy in the permission specification. On the other hand, if applications could be constrained to use documented APIs, then 

about 22% of the non-system permissions are actually unnecessary. Permission-based security rules are used by Kirin [28] to 

develop a light weight certification framework that can mitigate malicious activity at install time. Apex [29] and Saint [30] are 2 

extensions to the Android’s permission system by introducing runtime constraints on the granted permissions. 

Jeon et al. [31] presented RefineDroid, Mr. Hide, and Dr. Android, tools to understand and implement fine-grained permissions 

on Android platform without requiring modifications in the operating system. Using RefineDroid, they conducted a survey showing 

that fine-grained permissions are appropriate for a lot of popular apps. They then applied Dr. Android to transform a range of apps 

to use Mr. Hide. The study claims that fine- grained permissions via Dr. Android and Mr. Hide provide stronger privacy and security 

while affecting apps functionality and performance. Enck et al. [32] develop TaintDroid, a dynamic taint tracking and analysis 

system capable of tracking, multiple sources of sensitive data. TaintDroid provides control over how data flows amongst the 

applications. TaintDroid incurs only 14% performance overhead on a CPU-bound micro-benchmark. Using TaintDroid to observe 

the behaviour of thirty popular third-party Android applications, the author found 68 instances of potential misuse of users’ private 

information across 20 applications. Fuchs et al. [33] present ScanDroid, the first static program analysis tool that enable checking 

of Android applications once they are installed. It detects inter-application security risks from manifest files that accompany such 

applications. 

 

 Zhang et al. [34] present VetDroid, a dynamic analysis platform that use the permissions to reconstruct sensitive behaviours in 

Android apps, i.e., how applications use permissions to access system resources, and the way these acquired resources are further 

used by the application. Using real-world Android malware; they show that VetDroid can clearly reconstruct fine-grained malicious 

behaviors to ease malware analysis.  Gibler et al. [15] propose AndroidLeaks a static analysis framework for automatically finding 

potential leaks of private information in Android applications on a vast scale. This tool considerably decreases the number of 

applications and the number of traces that a security auditor needs to validate manually. The authors evaluate the efficacy of 

AndroidLeaks on a database of 24,350 Android applications, collected from different Android stores. AndroidLeaks found 57,299 

sensitive data leaks in about 7,414 Android apps, out of which they have manually verified that 2,342 apps leak sensitive data 

including phone information, GPS location, WiFi data, and audio.  Struse et al. [35] developed PermissionWatcher: an Android 

application that analyzes permissions of other applications downloaded on the phone. Based on a custom set of rules, it categorizes 

applications as malicious if any rules apply.  

Zhang et al. [36] designed Permlyzer, a tool to automatically analyze the permission usage in Android applications. Permlyzer 

leverages the combination of runtime monitoring and static analysis to explore the functionality of an application. Further 51 

malware families and more than 110,000 Android applications demonstrate that Permlyzer can detect permission use in all the 

applications. Like Permlyaer, Manilyzer, is a tool that utilizes the wealthy information in the manifest files and uses state-of-the-

art machine learning algorithms to categorize an application as malicious or benign. Other than classifying applications, Manilyzer 

is used to study the trends of permission requests in malicious applications [37].  Sanz et al. [38] present Manifest Analysis for 

Malware detection in Android (MAMA), a new method that extracts several features from the Android Manifest of the applications 

to build machine-learning classifiers and detect malware. PMDS (Permission-based Malware Detection Systems) is a tool that 

automatically identify for potentially dangerous behaviour in an app based on the combination of requested permissions. It has the 

potential to detect unknown and zero-day malware. Experimental results demonstrate that PMDS detects more than 90% of 

unknown malware with a false positives rate of 1.52–3.93% [39].  Zhou et al. [40] present Droidranger for malware detection on 

Android stores. Applications are first sieved based on the required permissions and then filter through a heuristics-based filter. The 

authors use a dataset of 204,040 apps collected from 5 different Android stores. DroidRanger detects 211 malicious applications 

and also exposed 2 zero-day malware (in 40 apps). RiskRanker [41] also tries to uncover malware by performing a risk analysis to 

categorize an app as a low, medium or high risk. 

 

5.3 Comparison of Tools 

Stowaways, Pscout, RiskRanker, PMDA, Kirin, ScanDroid, and AndroidLeaks are detecting Android malware application with 

static analysis. Malware can be quickly detected using static analysis and it also prevents the malicious application from being 

installed in the device. However, the static analysis can be avoided through obfuscation or encryption technique. In contrast, the 

obfuscation and encryption technique is not able to evade the dynamic analysis because it can detect the behavior of the malware 

during runtime. 

VetDroid, TaintDroid, Apex, Saint, RefineDroid, Mr. Hide are using the dynamic analysis. This approach tends to get a high 

generation of captured data which can consume the storage space and computational power. Besides that, times required to examine 

the malware activity cannot be define clearly [42]. 

http://www.jetir.org/


© 2018 JETIR August 2018, Volume 5, Issue 8                                      www.jetir.org  (ISSN-2349-5162)  
 

JETIRA006204 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1182 
 

Table 1: Comparison of Tools. 
Authors Tool Approach Availab

ility 

Based On Evaluation Scale Important Features 

Felt et al. Stowaway Static 

Analysis 

NA Manifest file & 
API calls 

940 apps Detect over claim of permissions. 

Au et al. PScout Static 

Analysis 

open API Calls 5 versions of 

Android OS 

Detect over claim of permissions. 

Enck et al. Kirin Static 

Analysis 

open  App 

Certification 

311 Mitigate malware at install time. 

Nauman et al. Apex Dynamic open Modified 

Kernel 

N/A Introduce runtime constraints on the 

granted permissions. 

Ongtang et al. Saint Dynamic 

Analysis 

NA Modified 

Kernel 

N/A Introduce runtime constraints on the 

granted permissions. 

Jeon et al. RefineDroid, 

Mr. Hide, & 

Dr. Android 

Dynamic 

Analysis 

NA API calls & 

Manifest File 

14 case study apps Implement fine-grained permissions on 

Android. 

Enck et al. TaintDroid Dynamic 
Analysis 

open Modified DVM 
& Taint 

Tracking 

38 apps Track the flow of sensitive data. 

Fuchs et al. ScanDroid Static 
Analysis 

open Taint Tracking 
& Manifest File 

N/A Apply data flow analysis to check 
privacy leaks. 

Zhang et al. VetDroid Dynamic 

Analysis 

NA Modified 

Kernel &  
TaintDroid 

1249 apps Examine the internal sensitive behaviors 

of an app. 

Gibler et al. AndroidLeaks Static 

Analysis 

NA API Calls 24350 Detect privacy violations in Android 

Struse et al. PermissionWa
tcher 

Static 
Analysis 

open Manifest File 1000+ 
Users 

Increase users awareness about harmful 
apps. 

Zhang et al. Permlyzer Hybrid open Call stack based 110,000 Automatically analyze the requested 

permissions. 

Feldman et al. Manilyzer Hybrid open Manifest 
File(machine 

Learning algos) 

617 Detect malicious Android applications. 

Sanz et al. MAMA Hybrid NA Manifest 

file(Machine 
Learning algo’s) 

N/A Detect malware 

Rovelli et al. PMDA Static NA Machine 

learning 
classifiers 

2950 apps Android malware detector. 

Zhou et al. DroidRanger Hybrid  NA Malware 

behavior 

footprints 

204,040 apps Android malware detector. 

Grace et al. RiskRanker Static 

Analysis 

NA Code path 

behavior 

118,318 apps Android malware detector 

*NA-Not Available 

Both Stopwaway and Pscout discover over claim of the permissions. Stopwaway works solely on Android version 2.2 whereas 

Pscout works on every version of Android [8]. As compared to Stopwaway that fuzzes the Android API directly, Pscout fuzzes the 

application that uses the APIs [30]. As a result, Pscout is more complex however less sound than Stopwaway. Kirin, Saint, Apex 

and Dr. Android and Mr. Hide are the tools that perform fine grain policy enforcement. Both Kirin and Saint perform policy 

enforcement at install time. Saint can also perform run- time policy enforcement. In Saint, any install time policy are defined by 

applications while the source of Kirin policies is mainly the author of Kirin [8]. The source of Aplex policies is mainly the end 

users. Saint and Apex require modifications in Android operating system; however Dr. Android and Mr. Hide run on unmodified 

Android systems [40].  TaintDroid detects sensitive data leaks with dynamic taint tracking. TaintDroid track only data flow, but not 

control flow. In Contrast, a similar tool ScanDroid uses static analysis to determine data flow through Android applications by 

accessing the source code. Vetdroid is a dynamic framework that constructs a permission use graph to identify actual permission 

use. Its data tainting method is built upon TaintDroid but improves it by identifying implicit and explicit permission use points. 

While TaintDroid needs manual user interaction to find data leaks [43], another tool of AndroidLeaks is completely automated. It 

uses static analysis approach records the event in a log which can be audited by the user if private information is leaked from the 

device. Premlyzer investigates the usage of permissions using hybrid approach without the goal to detect malware. However, 

Manilyzer examines the application for malware detection and also revealing trends in permission usage amongst malware [42]. 

Like manilyzer MAMA also rely on the manifest file to study the permissions and to find the malware. MAMA saves device 

resources by preventing malware installation instead of observing monitoring the execution of the application. PMDS, DroidRanger 

and RiskRanker are the tools that classify an app as malicious or benign. DroidRanger and RiskRanker rely on known malware 

samples. But they offer different methods to detect malware. These tools can detect zero-day malware also.  Droidranger takes a 

heuristic-based approach whereas PMDS uses machine learning algorithms for malware detection. PMDS also tries to correlate 

permissions to behavior as in VetDroid.  

To defend against this severe increase of Android malware and help users make a better evaluation of apps at install time, several 

approaches have been proposed. However, most of these solutions suffer from some shortcomings; computationally expensive, not 

general or not robust enough.  
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5. CONCLUSION 

The rapid growth of mobile devices has also increased the number of mobile malware within the application stores mainly when 

Android OS is widely adopted in the mobile devices. During this study, we have reviewed security issues in the permission model 

of Android operating system. This study has also comprehensively reviewed existing Android malware and malware detection 

tools. We have described the various static, dynamic and hybrid tools that are used to improve the security factors and permission 

mechanisms like Apex, Kirin, DroidRanger etc. The Android malware detection system must take the consideration of the limited 

resources the mobile devices provide. This study shows that there is a need for finding a more vigorous, reliable and effective 

Android malware detection tools. 
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